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ELFS: Object-Oriented Extensible File Systems

Abstract

High performance scientific data analysis is plagued by chronically inadequate I/O perfor-

mance. The situation is aggravated by ever improving processor performance. For high perfor-

mance multicomputers, such as the Touchstone Delta that possess in excess of 500, 60 megaflops,

processor I/O will be the bottleneck for many scientific applications.

This report describes ELFS (an ExtensibLe File System). ELFS attacks the problems of 1)

providing high bandwidth and low latency I/O to applications programs on high performance

architectures, 2) reducing the cognitive burden faced by applications programmers when they

attempt to optimize their I/O operations to fit existing file system models, and 3) seamlessly man-

aging the proliferation of data formats and architectural differences. The ELFS solution consists

of language and run-time system support that permits the specification of a hierarchy of file

classes. 
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ELFS: Object-Oriented Extensible File Systems

1. Introduction

Contemporary high performance computer systems are becoming increasingly unbal-

anced. CPU speeds have increased dramatically over the last decade. At the same time I/O perfor-

mance has improved only marginally. Thus, the performance of many scientific applications is

bounded by the performance of their database1. They cannot get their data in and out of the

machine fast enough. Evidence of this problem abounds. NRAO (the National Radio Astronomy

Observatory), for example, has many database bound applications. One, a deconvolution algo-

rithm, consumes 20 minutes of Cray CPU time, yet takes over 10 hours of wall clock time. The

difference is due to database waits [20].

The advent of highly parallel architectures has made the problem even worse. For exam-

ple, the Intel 128 node iPSC/860 has a peak performance of 7680 double precision mega-flops,

and the recently released Delta has a peak rate almost four times that of the iPSC/860. Yet IO

latency is still in the 10-20 millisecond range, and the aggregate bandwidth is only on the order of

3 MB/second for a 4 node IO system. What this means for scientific programmers is that their

applications will be more I/O bound than ever before on the new machines; that they will not be

able to read, modify, and write their scientific database fast enough unless new and better ways to

manage scientific databases are found. Thus, they will be unable to fully exploit these new archi-

tectures to solve ever larger problems.

ELFS (an ExtensibLe File System) attacks the problems of 1) providing high bandwidth

and low latency I/O to applications programs on high performance architectures, 2) reducing the

cognitive burden faced by applications programmers when they attempt to optimize their I/O

operations to fit existing file system models, and 3) seamlessly managing the proliferation of data

formats and architectural differences. The ELFS solution consists of language and run-time sys-

tem support that permits the specification of a hierarchy of file classes. Domain specific I/O oper-

ations can be specified for each class, reducing the cognitive burden on applications programmers

that use the classes, as well as providing class specific optimization information to the implemen-

tation of the class. Prefetching and caching strategies can be specified on a class by class basis,

enhancing performance. ELFS file objects may be partitioned and striped across multiple physical

devices in a data domain sensitive fashion, increasing bandwidth over that available by straight

1. The term database has a different meaning for many scientific applications than is usually used by computer
scientists. Computer scientists are used to thinking of relational, network, or hierarchial databases and data-
base packages, e.g., accounting databases. A database to a computational scientist may be a collection of ma-
trices, temporal data, or a set of grid points and their associated field values. The databases are treated more
like files than databases in the computer science sense.
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striping. Instances of the file classes are accessed in an asynchronous, possibly pipelined, manner,

further improving performance.

File systems have changed very little over the past twenty years. While other areas of

computer design, such as CPU architectures, programming languages and compilers, have experi-

enced radical change, contemporary file systems differ little from those of twenty years ago. A

typical example of a contemporary file system is the UNIX file system. The UNIX file system

treats files as named sequences of bytes. It supports operations to create, open, close and delete

files. Synchronous (blocking) operations seek to a particular location and to read and write blocks

of data are also provided. This model has lasted so long because it provides sufficient functional-

ity and adequate performance for those applications that fit its underlying assumptions.

There are two reasons why contemporary file system models are no longer adequate. First,

I/O performance is not keeping up with CPU performance. CPU speeds have increased over one

hundred fold in the last ten years, yet I/O latencies have improved only by a factor of about four

and I/O bandwidths by a factor of about ten. The result is that I/O is increasingly a bottleneck [1,

12]. Even on a single processor IBM Risc System 6000, in the approximately 22ms it takes to sat-

isfy a RANDOM I/O request, 1.84 million floating point operations can be performed. The prob-

lem is particularly acute for the new high performance parallel architectures. Thus it is more

important than ever that applications spend a minimum amount of time waiting for I/O. 

The second reason involves the file abstractions themselves. The programmer uses I/O

operations to move data from permanent storage (files) to internal data structures. If the file

abstractions available to the programmer do not map well to the application’s internal data

abstractions, the programmer must remap the data. This adds to the programmer’s cognitive bur-

den. The extra effort spent remapping the data reduces the amount of effort that can be spent on

the application itself.

The I/O performance problem is compounded by poor I/O interfaces. Contemporary file

system interfaces provide no mechanism for indicating how a file will be accessed. Therefore, in

order to make performance optimizations, the file system must make assumptions about how the

file will be used. For example, to reduce I/O latency and increase effective bandwidth, some file

systems attempt to prefetch data that will be needed in the future. They also attempt to cache data

that will be needed again. Usually, the prefetch and caching strategies are based on the assump-

tions that files will be accessed sequentially and that file access patterns exhibit locality. If the

application’s file access pattern fits these assumptions, prefetching and caching will greatly

improve file system performance. Otherwise, prefetching and caching will not provide any perfor-

mance improvement, and may, in fact, reduce performance. This may result in large latencies and

low effective bandwidths for the application. Because of this behavior, the programmer who



3

wants the best performance must make the application fit the file system assumptions, often wast-

ing effort finding a sequential access method, improving locality or performing local caching.

As an example of this problem consider a common implementation of a 2D FFT on data

that will not fit in memory. Typically the matrix is stored on disk by row or by column. Suppose

that it is stored by row. The algorithm consists of three steps. In the first step a 1D FFT is per-

formed on the matrix, reading and writing the matrix by rows. In the second step the matrix is

transposed on disk, a very time consuming operation. The third step is to again perform a 1D FFT

on the matrix by row. The transpose is necessary because the file system does not support effi-

cient, type specific access methods, in this case, access by columns.

We believe the time has come to re-examine the file system interface. What is needed, and

what ELFS will provide, is language and system support for a new set of file abstractions. These

abstractions provide the following capabilities:

1)  User specification of caching and prefetch strategies - This feature allows the user to
exploit application domain knowledge about access patterns and locality to tailor the cach-
ing and prefetch strategies to the application.

2) Asynchronous I/O - ELFS permits the overlapping of I/O operations, including
prefetching, with the application’s computation.

3)  Multiple outstanding I/O requests -ELFS allows the application to request data before
it is actually needed. The application can then do some computation while the I/O is being
processed. By the time the data is actually needed it is more likely to be available.

4)  Data format heterogeneity - ELFS classes may be constructed so as to hide data format
heterogeneity, automatically translating data as it is read and written. This can vastly sim-
plify the applications code.

These new file abstractions are structured as a user-extensible class hierarchy with inherit-

ance, thus providing the benefits of object-oriented programming to the application designer. The

programmer can then extend basic file abstractions with type-specific operations. These opera-

tions can be used to specify access pattern information or other domain knowledge to the file sys-

tem. A file interface that closely matches the application’s internal data structures can be

designed, thus reducing programming effort.

We are currently developing such a system at the University of Virginia. When complete,

ELFS will consist of two parts: the definition of a file system class hierarchy, and compiler and

run-time system services that support asynchronous objects and multiple outstanding requests

without explicit programmer control. The system will be implemented using the parallel program-

ming language MPL [5, 7], which is an extension of C++ [19].

The class hierarchy in our system contains the base class unix_file (see Figure 1).. This

class supports the standard UNIX file operations, creat, open, close, lseek, read, and write. It
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mimics the semantics of UNIX files, exhibits the same prefetching and caching features as UNIX

files, and in fact is often just a call-through to the underlying file system. Our mechanism only

becomes interesting when new classes are derived from unix_file.

For example, the class 2D_matrix_file inherits all of the unix_file operations and provides

additional member functions based on the semantics and structure of the underlying abstraction.

For a two dimensional matrix these member functions allow the specification of the matrix

dimensions (e.g., 100x100), the element size (e.g., 8 bytes for double precision) and the access

method (e.g., by row, by column, or by block). Because the implementation of the class knows the

underlying structure and is told (via member functions) the access pattern, it can prefetch and

cache data more intelligently than the file system can without any such knowledge. Detailed infor-

mation of a preliminary version of this class, including preliminary performance information, is

presented later.

The remainder of this report is in four sections. In section 2 we discuss ELFS in more

detail, including the presentation of a class hierarchy with several derived classes and their imple-

mentation rational. Section 3 describes the implementation environment. Section 4 compares

ELFS to other approaches to the problem. Section 5 summarizes the report.

2.  The ELFS Approach

This section describes our solution via the description of one possible class hierarchy. Our

objective is not to claim that these are the classes that one should choose, but rather to illustrate

the power and flexibility of the approach. We begin by briefly describing the object model that we

are using, and then proceed with the class hierarchy, including descriptions of the interfaces and

those implementation features germane to our claims.

unix_file

pfo 2D_matrix_file binary_tree_file variable_consistency_file

Figure 1. The ELFS Class Hierarchy.

read()
write()
lseek()
open()
close()

creat()

banded_matrix_file
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2.1  Object Model

We use an object model that distinguishes between two “types” of objects, contained

objects and independent objects.2 Contained objects are objects contained in another object’s

address space. Instances of C++ classes, integers, structs and so on are contained objects. Inde-

pendent objects possess a distinct address space, a system-wide unique name, and a thread of con-

trol. Independent objects are analogous to UNIX processes.

The disjoint address space component of our model is an artifact of our implementation

environment (described later) and is not critical to the following discussion. The independent

thread of control is important.

The independent thread of control is critical because we want our file objects to be able to

asynchronously perform prefetching and caching operations. Further, in our model, operations on

independent objects are carried out in an asynchronous, possibly pipelined, fashion. Any neces-

sary synchronization is managed by the compiler operating in conjunction with the run-time sys-

tem. Thus, I/O operations can be carried out on the user’s behalf while the user is performing

other operations. Below we assume that the instances of our file objects are in essence separate

processes, and that they can perform I/O and other functions independently from the user’s thread.

2.2 The Class Hierarchy

There are four subclasses currently defined in our class hierarchy, pfo’s, 2D_matrix_files,

binary_tree’s and variable_consistence_files. Each is designed to illustrate how the shortcomings

of existing file system interfaces can be cleanly avoided. Pfo’s attack the problem of bandwidth by

distributing a file across multiple devices. 2D_matrix_files provide matrix I/O operations that are

both conceptually close to the model the programmer wants, and are equally efficient for row and

column operations. Binary_tree_files illustrate how aggressive prefetching for non-sequential data

structures based on object structure, in this case a tree, can be performed, providing a performance

improvement over traditional file systems. Finally, variable_consistency_files can be used to

avoid the consistency semantics of NFS files [9].

2.2.1 Parallel File Objects - pfo’s

Parallel file objects attack both the bandwidth and latency problems on parallel and dis-

tributed systems. A detailed description, including performance, can be found in [6]. In addition

to the unix_file operators, pfo’s provide operators that allow the user to:

2. The distinction between independent and contained objects is not unusual, and is driven
by efficiency considerations.
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1)   specify the structure of the file, e.g. 1D array, 2D array, 3D array. This has the effect of
imposing a logical structure on the file.

2)   partition (decompose) the pfo into sub-pfo’s. The decomposition is into subsets of the
specified logical structure of the file. The partition is a true partition, i.e., the subsets do
not overlap. Sub-pfo’s may also be partitioned. 

3)  read and write logical blocks of data in the name space of the partitions, e.g., the user
may read a row, or a column, or a block.

4)   the location (processor and attached I/O device) of each partition may be specified.
Thus, one can place file subsets close to the processors where they will be needed. 

5)  specify the access pattern, e.g., by row, by column, reverse order, etc. This provides
information that enables the pfo to optimize based on the access pattern.

These operators combine to support the exploitation of file structure in order to optimize

performance, engender high bandwidth by distributing the file to multiple devices with placement

determined by the file structure, and provide very low access latencies by performing file opera-

tions asynchronously. 

Very high bandwidth is achieved by scattering pieces of the pfo to multiple devices, each

of which may be accessed in parallel (see Figure 2). This idea has been studied extensively [2, 8,

9, 13, 14, 15, 16]. What distinguishes our work from others is that the decomposition may be

specified using pfo’s, e.g., row-wise, column-wise, in blocks, etc. This is in contrast to systems

such as CFS [14]. CFS stripes the file across the disks in sequential 4K chunks. This decomposi-

tion will not be appropriate for all applications. By placing the data based upon its structure and

who is going to use it, higher performance is possible.

2.2.2  Matrix Files

The purpose of the 2D_matrix_files class hierarchy is twofold, to provide I/O operations

that match the applications programmer’s conceptual model of the data, enabling him to use

appropriate abstractions, and to provide higher effective bandwidth and lower overall latencies

than would be possible using the standard file operations. The matrix_class class hierarchy is

shown in Figure 3. The first of the objectives is met by providing member functions to read and

write rows and columns. A partial interface for the 2D_matrix_file class is shown in Figure 3. The

read and write operations have the expected semantics. Note though that neither returns a status

code upon completion. If the user needs to know the status of the most recent operation the

int_status() member is called. By not returning status information with every operation we permit

additional asynchrony between the 2D_matrix_file object and its client.

High performance is realized by exploiting knowledge of the underlying structure, making

use of user supplied access pattern hints, performing prefetching and caching functions asynchro-
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nously, and by pipelining I/O requests whenever possible.

To support both high performance row access and high performance column access we

have used a “square partition” storage method (see Figure 4). Typically 2D matrices are stored

either by row or by column. It is very inefficient to access a row of a column stored matrix or vice

versa. When the matrix is stored by square blocks (Figure 4), row access and column access are

equally efficient, and just as efficient as row access on a row stored matrix. The basic idea when

reading by row is to fetch a row of square submatrices and then service the row requests from the

buffer. While those read row requests are being satisfied, the 2D_matrix_file object begins to pre-

Root pfo

Original data

Host_0 Host_1 Host_2 Host_3

Data_0 Data_1 Data_2 Data_3

pfo_0 pfo_1 pfo_2 pfo_3

user process 0 user process 1 user process 2 user process 3

Figure 2. Bandwidth Enhancement via Parallel Access, Low Latency.

unix_file

2D_matrix_file

banded_matrix_file

Figure 3. 2D_matrix_file Class Hierarchy and Interface.

2D_matrix_file: unix_file {
public:

2D_matrix_file(string *name, int mode, 
int xdim, ydim,el_size);

vector *read_col(int column);

vector *read_row(int row);
void *write_row(int row, vector *data);
void *write_col(int col, vector *data);
int status();
void read_by(int row_or_col, int stride);
void write_by(int row_or_col, int stride);

};
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fetch the next row of sub-matrices. Column requests are satisfied in a similar manner. For large

files the overhead of “priming the pump” (reading the first row of the sub matrices) is amortized

over all row accesses. Note that asynchronous prefetching can begin as soon as the user specifies

by row or by column access. Further, the stride parameters can be used, and we need read only

those rows/columns that will actually be used.

2.2.3  Preliminary Results

During the Spring of 1991 we implemented a preliminary sequential, synchronous version

of the 2D_matrix class in C++ . Performance results are quite encouraging. Figure 5 below pre-

sents a performance comparison between straight C calls to read rows from a Unix file, 2D_ma-

trix read_row calls, and 2D_matrix read_column calls on a Sparc station 2 with attached disk. The

horizontal axis is the dimension of the matrix (of integers), and the vertical axis is the time

required to read the entire matrix in seconds. As can be seen there is almost no performance pen-

alty when using the 2D_matrix class for reading by row. In the current implementation it costs just

over twice as much to read by column than by row using the 2D_matrix class, whereas it is essen-

tially impossible to read a the Unix file by column. We believe that the 2:1 ratio is an artifact of

the non-fragmentation of the test disk. Under normal fragmentation we expect the ratio to

approach 1:1. The point though is that by using “intelligent” file objects very good performance is

Figure 4. NxN matrix storage using “square partitions”.

N
α

N
α

… … …
…

…

…

N
α

N
α ω= =

ω2

ω2α2 N N×=

Assume 

cells

blocks (square submatrices)

α

α

columns

rows



9

possible for application domain specific file operations, e.g., read_column.

2.2.4 Binary_tree_files

The binary_tree_file class uses prefetch and caching strategies based on the tree structure

in Figure 6. The binary tree case described can be generalized to k-ary trees. The file maintains a

current position in the tree, analogous to the current position of a standard file. The prefetching

strategy is to aggressively begin prefetching the left and right children of a node whenever the

Figure 5. Preliminary Performance for Sequential 2D_matrix

0

0.5

1

1.5

2

2.5

3

2500 3000 3500 4000 4500 5000

Read  by Rows
Read by Columns

Pure Unix Read by Row

E
ffe

ct
iv

e 
B

an
dw

id
th

 M
B

yt
es

/S
ec

.

root

cached

current tree position

prefetched

binary_tree_file : unix_file {
public:

int open(string *name, int mode
int data_size);

tree_element *get_left_child();
tree_element *get_right_child();
void insert_left_child(

tree_element *child);
void insert_right_child(

tree_element *child);
tree_element *get_parent();
void go_left();
void go_right();
void go_up();
int status();

};

Figure 6. Binary_tree Caching and Interface.
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current_tree position is modified by a go_left(), go_right(), get_left(), get_right() or go_up().

Thus, when the next user request arrives, the requested node will have already been fetched, or the

I/O operation will have at least begun.

The caching strategy is to cache all nodes from the current_tree_position to the root,

including the current children and all of the children of the nodes on the path to the root. When the

maximum cache size in tree_element nodes has been exceeded, nodes closest to the root are dis-

carded as new nodes are added. Of course, the class could permit different caching strategies to be

specified, e.g., assuming a breadth first cache instead of a depth first cache.

The prefetched cache strategies described above should provide better hit rates than the

standard file system strategies of sequential prefetch and block based LRU. However, the point is

not whether these are the best strategies, but rather that they are object specific strategies and can

be changed on an application by application basis.

2.2.5 Variable_consistency_files

Variable_consistency_files are motivated by the desire to tune consistency on an applica-

tion-by-application basis rather than for a whole system. Recall first the consistency semantics of

UNIX files, where writes to a file by a process are immediately visible by other processes. Two

distributed file systems, NFS [18] and Sprite [11], take different approaches to consistency [9].

NFS does not support UNIX semantics [9]. In order to improve performance, NFS caches data

blocks at the client’s machine, improving performance at the expense of consistency. The design-

ers of NFS made this trade-off because they felt performance was paramount. Sprite on the other

hand, preserves UNIX semantics no matter the cost. Sprite caches to improve performance until a

server detects that a file is opened by more than one client, at least one of whom is writing. When

this condition is detected, caching is disabled for the file, guaranteeing consistency and a perfor-

mance penalty.

We can see that there is a trade-off between performance and consistency because of cach-

ing effects. The designers of the NFS and Sprite file systems have made the decision as to which

of these two attributes will be sacrificed for the other. Unfortunately, all applications running on

these systems must operate within the constraints imposed by their decisions. We feel that the

application’s designer is best able to make the decision on how and where to trade consistency for

performance. Thus the application writers should be able to specify the consistency semantics that

they need on a file by file basis. Further, since the consistency requirements of a file may vary dur-

ing the course of an application’s execution, the consistency should be variable.

 Figure 7 below illustrates a possible interface for a variable consistency file that provides

just such a capability. The class is derived from unix_file. Thus all of the unix_file operations are
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inherited. Their implementations, however, have been overloaded. The one new member function,

set_consistency_window(), permits the user to vary the consistency of the file. A consistency

value of 0 seconds implies that the UNIX consistency semantics are to be used for the file, i.e., all

reads return the last value written. A value of 5 seconds means that the value returned by a read is

no more than 5 seconds old. When more than one instance of a particular file is open, the smallest

of the specified values is used.

When using a variable_consistency_file an application has complete control of the consis-

tency semantics of the files used, and may vary the semantics over time to achieve the desired

trade-off of performance and consistency.

3. Mentat Programming Environment

We have begun implementation of ELFS using the Mentat parallel programming system

[4, 5, 7]. Mentat is an object-oriented, parallel computation system designed to provide easy-to-

use parallelism for parallel and distributed systems. Mentat alleviates most of the burden of

explicit parallelization that message passing systems typically place on the programmer. Further,

Mentat programs block only if specific data dependencies require blocking, thereby greatly

increasing the degree of parallelism attainable over that from RPC systems. 

The Mentat Programming Language, an extension of C++, simplifies writing parallel pro-

grams by extending the encapsulation provided by objects to the encapsulation of parallelism.

Users of Mentat objects are unaware of whether member functions are carried out sequentially or

in parallel. In addition, member function invocation is asynchronous (non-blocking); the caller

does not wait for the result. It is the responsibility of the compiler, in conjunction with the run-

time system, to manage all aspects of communication and synchronization. The underlying

assumption is that the programmer can make better granularity and partitioning decisions, while

the compiler and run-time system can correctly manage communication and synchronization. By

splitting the responsibility between the compiler and the programmer we exploit the strengths of

each, and avoid their weaknesses. 

Mentat has been implemented on three architectures that span the MIMD spectrum, a net-

work of Sun workstations (loosely coupled), the Intel iPSC/2 (tightly coupled), and the BBN But-

terfly (shared memory). Mentat programs are source compatible between supported architectures. 

class variable_consistency_file: unix_file {
public:

set_consistency_window(int seconds = 0);
};

Figure 7. Interface for variable_consistency_files.
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There are three important aspects of Mentat with regard to ELFS. The first is that instances

of Mentat classes, called Mentat objects, possess an independent thread of control. Thus, ELFS

file objects, when implemented as Mentat objects, operate asynchronously from their clients, per-

forming prefetching and suffering the I/O wait, while the client performs other operations. Sec-

ond, a client may have multiple outstanding requests to a Mentat object. Thus, several I/O

requests may be pipelined, and I/O requests to different file objects may be performed in parallel.

Third, the management of communications and synchronization between clients and Mentat

objects is transparently managed for the programmer by the MPL compiler and the Mentat run-

time system.

In Mentat, when a Mentat object member function is encountered, the arguments are mar-

shalled and sent to the callee but the caller does not block waiting for the result. Consider the

statement.

 x = mentat_object.member_function().

The run-time system monitors (with code provided by the compiler) where x is used. If x is later

used as an argument to a second or third Mentat object invocation, then arrangements are made to

send x directly to the second and third member function invocations. If x is used locally in a strict

operation, e.g., y=x+1;, then the run-time system will automatically block the caller and wait for

the value of x to be computed and returned. Note, though, that if x is never used locally (except as

an argument to a Mentat object member function invocation) then the caller never blocks and

waits for x. Indeed x might never be sent to the caller, x might only be sent to the Mentat object

member functions for which x is a parameter. It is important to note that these decisions, as well as

all communication and synchronization, are handled completely by the compiler and run-time

system. The programmer is left free to concentrate on the application, not on the details. Two

examples illustrate the power of the Mentat approach.

Example 1: Consider the code fragment below that uses an opened instance, m_file, of the

Mentat class 2D_matrix_file.

1: for(i = 0;, i < n; i++)
2: data[i] = m_file.read_row(i);
3: // Process row 0.
4: for (j = 0; j < row_size; j++) // Block if data not available.
5: sum = sum + mpy_factn* data[0][j]
6: // Process row 1.
7: for (j = 0; j < row_size; j++) // Block if data not available.
8: sum = sum + mpy_factn* data[1][j]

Execution of the above results in n read_row() requests being sent to m_file. The execu-

tion of lines 4 and 5 will be delayed until the 0th row has arrived. While lines 4 and 5 are executed,

m_file continues to service the remaining requests, fetching the rows and delivering them to the
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client. If the processing of row 0 takes longer than the servicing of the row 1 request, then execu-

tion will not block on lines 7 and 8. The key point is that the user is not responsible for managing

the synchronization.

Example 2: This example illustrates the construction of a simple pipeline process. For this

example we define the Mentat class 

REGULAR MENTAT class data_processor
public:
 data_block* filter_one(data_block*); 
 data_block* filter_two(data_block*); 
};

The member functions filter_one() and filter_two() are filters that process blocks of data.

The exact function is not important. Consider the code fragment in Figure 8. 

This code fragment sequentially reads MAX_BLOCKS data blocks from the file

“input_file”, processes them through filters one and two, and writes them to “output_file”. 

In a traditional RPC system this fragment would execute sequentially. When coded using

Mentat, the program execution graph of Figure 9 results. Each of the four operations can be exe-

cuted on a separate processor. Further, the executions would be pipelined, with communication

and synchronization being fully overlapped.

m_file in_file,out_file;
 data_processor dp;
 in_file.create();out_file.create();
 int i,x; x = in_file.open((string*)”input_file”,1);
 x = out_file.open((string*)”output_file”,3);
 data_block *res;
 for (i=0;i<MAX_BLOCKS,i++) { 

res = in_file.read((i*BLK_SIZE),BLK_SIZE);
res = dp.filter_one(res);
res = dp.filter_two(res);
out_file.write((i*BLK_SIZE),BLK_SIZE,res); 

} 
Figure 8. A Pipelined Data Processor.

requests

filter_one out_file.write

data blocks filtered blocks filtered blocks

in_file.read filter_two

processor 1 processor 2 processor 3 processor 4

Figure 9. Program Execution Graph for Example2.
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4. Related Work

Other researchers have identified the potential I/O bottleneck in high performance com-

puters [8, 12]. Most of the proposed solutions involve caching, logging, prefetching or parallel

disk hardware [8, 12, 14]. These solutions all require special hardware or operating system modi-

fications and focus strictly on I/O performance. The solution presented in this report is broader in

scope. By providing a framework for developing application-specific file abstractions, ELFS

reduces the overall effort involved in programming high performance computers as well as

addressing the I/O performance problem.

The memory management and file systems of the Choices [10, 17] operating system pro-

vide some of the same functionality as the file abstraction framework presented in this report.

ELFS differs from the CHOICES file system in four significant ways. First, ELFS enables the

specification of file behavior at the application level, not at the operating system level. Thus,

defining, and using, new abstractions is very simple and requires no operating system changes.

Second, ELFS is designed to facilitate the exploitation of application domain knowledge and

structure, as well as user provided access pattern hints, to more intelligently cache and prefetch

data. Third, ELFS explicitly encourages the decomposition of data based on object semantics.

This better utilizes available bandwidth than straight striping. Finally, ELFS exploits compiler

techniques to transparently perform I/O in a parallel and pipelined fashion.

5. Summary and Future Work

 ELFS is being developed to address both the IO performance requirements of current and

future generations of parallel and sequential architectures, and to alleviate some of the cognitive

burden placed on the programmer when he attempts to get the best possible performance out of

traditional file systems. The basic ideas of ELFS are to 1) provide an extensible file system class

hierarchy that permits optimizations (e.g., prefetching and caching) based upon the structure and

semantics of the underlying file, and 2) allow operations on instances of the class hierarchy to be

performed in an asynchronous, possibly pipelined, fashion whenever possible. This combination

will result in file objects with very high observed bandwidths and very low observed latencies,

while at the same time reducing the burden on the programmer. 

5.1 Future Work

We are currently investigating several issues with regard to extensible file systems such as

ELFS. First, are user defined file systems a win? There are two dimensions to this question, per-

formance and ease-of-use. The second primary question to be investigated is what are the seman-

tics of multiple inheritance when applied to file abstractions?
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The performance question involves answering at least three sub-questions. First, how

often can I/O be pipelined in user applications? If there is little opportunity for I/O pipelining then

I/O will be essentially synchronous, implying that an application must pay the full I/O latency.

This has serious implications for high-performance computing, and will necessitate increased

research on low latency devices. On the other hand, if I/O can be pipelined, then current device

technology will be sufficient. A related question is: ‘what are typical computation ratios (compu-

tation time to I/O requirements)?’ Once again, if the ratios are small then there is little hope for

high-performance computation without better I/O device technology. Finally, does striping based

upon object semantics really make a performance difference? If it does not, then why bother?

The ease-of-use question is more difficult to directly address. The question is whether an

abstract data type that hides the implementation details of how to obtain high performance is eas-

ier to use than the naked file system. Proponents of object-oriented design would argue that this is

the case. We are monitoring, and collecting comments from applications domain users of ELFS

objects with the aim of answering this question.

Finally, what about multiple inheritance in file systems? This is the least understood aspect

of ELFS. Typically when multiple inheritance is used, the member functions (behavior) and data

of the parent classes are disjoint. This is convenient because it allows straightforward implemen-

tations. Unfortunately this is not the case in an extensible file system. While parent classes may

have their own private run-time member variables, the underlying data structure, the file, is the

same for both parents. Further, it will often be the case that what you really want in a derived class

are member functions that share some of the behaviors of all of the parent classes, e.g., a vari-

able_consistency_2D_matrix class. How do we reason about semantics in this case? How do we

specify the merger of semantics, or the dominance of one over the other? We do not yet have the

answers to these questions.
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